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A b s t r a c t  

From the viewpoint of graph theory and its applications, subgraphs of the filing of 
the plane with unit squares have long been studied in statistical mechanics. In organic 
chemistry, a much more relevant case concerns subgraphs of the tiling with unit hexagons. 
Our purpose here is to take a mathematical view of such polyhex graphs G and study 
two novel concepts concerning perfect matchings M. First, the forcing number of M is 
the smallest number of edges of M which are not contained in any other perfect matching 
of G. Second, the perfect matching vector of M is written (n 3, n. z, n 1, no), where n k is 
the number of hexagons with exactly k edges in M. We establish some initial results 
involving these two concepts and pose some questions. 

1. I n t r o d u c t i o n  

Consider the (honeycomb) paving P of the entire plane with regular hexagons, 
each of which has sides of unit length. For each Jordan curve J in P consisting 
entirely of the vertices and sides of the regular hexagons, we have a polyhex, which 
is the graph formed by all the nodes and edges which are either on J or in the 
interior  o f  J.  Thus,  a po lyhex  is a 2-connected subgraph  o f  P which is s imply  connected 
in the plane.  This  def ini t ion is ana logous  to that o f  a square  cell  graph,  first  calAed 

an animal in [1 ]. In general ,  we fo l low the graph- theore t ic  nota t ion  and t e rmino logy  
of [2]. 

The interest in polyhexes for theoretical chemistry is due to the hexagonal 
shape of a benzene ring, combinations of which form benzenoids. An entire book on 
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benzenoids, by Cyvin and Gutman [3], includes several graph-theoretic results concerning 
polyhexes, particularly on the number fl(G) of so-called 1-factors of a polyhex G, 
to be defined shortly. There are several other recent books [4, 5] on polyhexes. Further, 
there is a "classic" treatise on organic chemistry, by Clar [6], which lists the chapter 
titles as polyhexes. The smallest of these are shown in fig. 1, in which 4.3, for 
example, is the third polyhex with four hexagonal cells, in the order in which we 
happened to draw them. 

O OO 
1.1 2 . i  

3.1 3 .2  3.3 

4.1 4.3 4 . 4  

4 . 6  4 .7  4 . 5  

Fig. 1. All 12 polyhexes with at most four hexagons. 

2. Perimeter and interior nodes 

Let polyhex graph G have p nodes, q edges, n cells, and perimeter ~ as the 
length of the exterior cycle. An exterior node is on that cycle; an interior node is 
not. Let i(G) be the number of interior nodes. Table 1 lists these invariants for each 
of the polyhexes of  fig. 1. 

From table 1, one can make various observations, which sometimes may then 
be generally proved. Define polyacenes and a polyphenacene as suggested by fig. 2. 
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Table 1 

The numbers p, q, zr and i for the smallest polyhexes 

Polyhex 1.1 2.1 3.1 3.2 3.3 4.1 4.2 4.3 4.4 4.5 4.5 4.7 

p 6 10 14 14 13 18 18 18 18 18 16 17 

q 6 11 16 16 15 21 21 21 21 21 19 20 

6 10 14 14 12 18 18 18 18 18 14 16 

i 0 0 0 0 1 0 0 0 0 0 2 1 

Fig. 2. The 8-acene and the 8-phenacene. 

The number of nodes and of edges of both the n-acene and the n-phenacene may be 
readily seen to be given as 

p = 4 n +  2 and q = 5n + 1. (1) 

A generalization to arbitrary polyhexes is: 

PROPOSITION 1 

Every n-cell polyhex G satisfies: 

p = 4 n  + 2 - i, 

q = 5 n  + 1 - i, 

~z=4n  + 2 - 2 i .  

These results, which may be readily established by mathematical induction, are 
already known [5], although they may often be expressed in terms of different 
subclasses of nodes and/or edges. The subclass of degree-2 vertices is quite important, 
since its number P2 = 2n + 4 - i counts hydrogen atoms (which are "suppressed" in 
the current ~r-network graphs). Categorization, characterization and enumeration of 
polyhexes has been made [5] in terms of these indices. 

3. Forcing perfect matchings 

A 1-factor of a graph G, also called a perfect matching (pm), or a Kekuld structure, 
is a spanning subgraph M which is regular of degree 1. That is, M consists of  disjoint 
edges which cover all the nodes. The number o fper fec t  matchings of G is written f~ (G). 
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This number is of  special interest for the chemical properties of  a benzenoid 
(see [3-5]) .  It also is of  importance mathematically [7]. 

When G is a bipartite graph, the number fl(G) is known to be given [81 by 
the permanent of a certain matrix associated with G. This fact was used in [9] to 
determine fl(Qn), the number of  perfect matchings in a hypercube, for n < 5. Also 
the scheme of John and Sachs [10] is notably elegant and practically imple- 
mentable [1 1] to evaluate fl(G). 

The classification of  polyhexes, which have or do not have a pm, is a 
question of  central interest. Clearly, a polyhex G must have p even to have a perfect 
matching M. A stronger criterion arises from the consideration of  the partitioning of 
vertices into starred and unstarred sets such that any pair of  neighboring vertices are 
in different sets. Then clearly for G to have a pm, there must be equal numbers of 
starred and unstarred sites. Although necessary, this condition is not sufficient, as 
witnessed by Clar [12], Gutman [13] and Balaban [14] in the examples of  fig. 3. For 

Fig. 3. Three polyhexes with equal numbers of starred and unstarred vertices, but no pm. 

small polyhexes with n _< 10 hexagons, Zhang et al. [15] have established this condition's 
sufficiency. Algorithmic schemes that are generally both necessary and sufficient for 
a pm to occur are known [161. 

One fundamental aspect of a pm, M, it its forcing number q)(M), which is the 
smallest number of  edges in a subset S c M such that S is in no other pm. When 
~0(M) = 1, there is an edge e ~ M not in any other pm; then, e is a forcing edge for 
M. In fig. 4, the first four polyhexes of fig. 1 are shown, with the forcing edges 

(Z) 
Fig. 4. The forcing edges of the first four polyhexes. 
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marked by a short perpendicular bisector. The polyhex 3.3 of fig. 1 is not shown 
since it has no pro, as is clear since p = 13 is odd. The 4-phenacene illustrates that 
in some cases no edges are forcing, and further such cases include the n-phenacenes 
with n -> 4. A related question concerns those polyhexes with all edges forcing. This 
is solved completely by: 

THEOREM A 

The single-hexagon polyhex (i.e. benzene) is the only one in which every edge 
is forcing. 

This is proved in appendix A. 

Further questions are: Which edges are in no pms? Which are in every pm? 
The answer to the first of  these questions directly answers the second: e is in every 
pm iff every edge of G adjacent to e is in no pm. Hence, the answer to  the first 
question generally contains more information. This in turn may be answered via 
repeated use of an algorithm we have developed to decide whether any edge e is in 
n o p m .  This algorithm involves the exploration of various tentative pms through an 
application of what we might call a matching edge deletion for edge e, where e and 
the end nodes of e (as well as e's adjacent edges) are simultaneously deleted. Then, 
if any degree-0 node occurs in the resultant new graph G', it is identified as a null 
graph (with no pm possible). Our scheme analyzes a sequence of graphs obtained via 
such matching edge deletions. 

ALGORITHM 

Proceed through steps (a), (b), (c) below until either an empty non-null graph 
is obtained, whence edge e is in a pm, or else all graphs are null, whence e is in no 

Make a matching edge deletion for e. 

If there is a degree-1 vertex (in the non-null graph considered), make a matching 
edge deletion for the edge incident there. Repeat for all degree-1 vertices. 

(c) If there is a degree-2 vertex (in the non-null graph considered), form two new 
graphs obtained via matching edge deletions for the two edges incident there. 
For each non-null graph so generated, return to (b). 

An application of this algorithm is illustrated in fig. 5. The algorithm 
is not in fact restricted to polyhexes,  but in general, further steps (d), (e), etc. 
would be needed to check higher degree nodes. (We do not require these checks since 
a non-empty non-null graph deriving from a polyhex always has a vertex of  degree 
1 or  2 . )  

When e is in no pro, it is called (in the chemical literature) essentially single, 
while if e is in every pm, it is called essentially double. Another way to determine 

pm. 

(a) 

(b) 
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(a)  
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n u l l  

(b) 

e 
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empty 
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Fig. 5. Two examples of the application of the algorithm to determine whether the indicated 
edge is in a pro. In case (a), after deletion of e, one deletes f, f ' ,  g and g' using step (b) of 
the algorithm; the resulting graph still has degree-1 vertices, so one continues with the deletion 
of edges f" and f"', whence a null graph (wherein the lone vertex is circled) results. Thus, 
in case (a), e is in no pro. In case (b) of the figure, "branching" occurs at two points along 
the way, but only one branch is followed by the algorithm to find that e is in at least one pm. 
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edges which are in no or all pms of a polyhex is to compute the inverse of the 
adjacency matrix, this inverse being known [17] to exist iff fl(G) ~ O, and its elements 
for adjoining pairs of sites yielding quantitatively [18] the proportion of perfect 
matchings containing the edge between the adjoining pair. Questions on the forcing 
number  may be formulated, for G with f~(G) > 0: What is the minimum forcing 
number  for G,  what is the maximum forcing number for G,  and what is the average 
forcing number  for G ? 

Some of the forcing number  ideas and questions are found in previous 
articles [19] in the chemical literature. There, the forcing number  has been 
termed the degree of freedom of a Kekul6 structure (orpm),  and the sum over 
all pms of these values was termed the "degree of freedom" F(G) of the parent 
graph G. Then, the average forcing number is F(G)/fl(G ), and this has been 
given [19] for a dozen or so of the smallest polyhexes as well as all the 
n-phenacenes. These ideas also relate to a type of (long range) ordering [20] 
for pms. 

There are many other interesting forcing phenomena in graph theory. The pm 
forcing number can be generalized to define forcing for a maximum (but not 
necessarily perfect) matching. Similarly, a maximal set of independent nodes can 
be forced. The forcing number for the chromatic number of a graph is the topic 
of [21], where it is intended as a model for software applications. The forcing 
numbers for the edge chromatic numbers of the five platonic graphs have been 
derived [21]. Of course, forcing numbers can also be defined [21] for any other type of 
coloring of various structures, even when the coloring is described as a partition with 
no mention of colors. 

4. The  perfect  m a t c h i n g  vector 

Let M be a perfect matching of a polyhex G with n cells. The pm-vector of 
M is defined as (n 3, n 2, n 1, no), where n h is the number  of cells of G which contain 
exactly h edges of M. The vectors of pms in polyhex 2.1 are (2, 0, 0, 0) and (1, 1, 0, 0). 
For polyhex 3.1, we have (1, 2, 0, 0) and (2, 1, 0, 0). The pm-vectors which occur in 
polyhex 3.2 are (3, 0, 0, 0), (2, 1,0,  0), (2, 0, 1, 0) and (1, 2, 0, 0). The n-acene graphs 
each have 2 pros with pro-vector (2, n - 2, 0, 0) and the remaining n -  1 pros have 
pm-vector  (1, n - I, 0, 0). Clearly, the pro-vector is only a partial characterization of 
a pm, but some key information is encoded. The value n 3 is termed in the chemical 
literature [22] the conjugated 6-circuit count for the pm. The average value of  n 3 for 
a given G plays a central role in "conjugated circuit theory". These n h seem also to 
have been mentioned by Sahini [23]. 

Natural invariants of G are: the maximum value of n h, the minimum value of  
n h, and the average value of n h, h = 0, 1, 2, 3. One might  also enquire as to which 
polyhexes G exhibit "extremal" pm-vectors. Necessary and sufficient structural conditions 
for one such type of extremum are given by: 
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THEOREM B 

An n-cell polyhex has a pm M with pm-vector (n, 0, 0, 0) iff the polyhex is 
catacondensed and does not contain the 3-acene subgraph. Moreover, a pm with this 
extremum vector is unique. 

The definition [24] of "catacondensed" we use here utilizes the inner dual G* 
of the polyhex G : vertices of G* correspond to hexagons of G, and two such vertices 
are adjoined by an edge of G* iff they correspond to adjacent hexagons (having one 
common edge). Then, a polyhex is catacondensed iff its inner dual is acyclic. The 
proof of theorem B is given in appendix B. Indeed, the proof is constructive for the 
extremum pm in the theorem - this extremum is simply that forced by all "internal" 
bonds. See fig. 6 for an example. 

Fig. 6. An example of a 3-acene-free catahex whose extremum pm with 
pm-vector (11,0, 0, 0) is forced by the internal edges indicated in boldface. 

A point of some chemical interest is that the "extremal" pms of theorem B, and 
hence presumably also the structures of theorem B, are indicated by Fries [25] to be 
especially favorable for aromatic stability. That is, of all pms of a polyhex, Fries [25] 
argued that the most chemically significant are those with the maximum value of n 3. 
Clearly, of all possible n-cell polyhexes, the maximum value of this maximum occurs 
for 3-acene-free catacondensed polyhexes which then, according to Fries' ideas, 
would be presumed to be the most stable aromatic species. Of course, Fries' ideas 
differ somewhat from Clar's [12], although this also attends to the occurrence of  
triples of pm edges in single hexagons of the polyhex. In any event, we can say 
theorem B provides a complete (graph-theoretic) structural characterization of the 
polyhex systems most stable by Fries' criterion. Indeed, this criterion has previously 
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been advocatedby El-Basil [26], who termed polyhexes satisfying this criterion "all- 
benzenoid". The consequent structures in theorem B have been recently proposed by 
Randi6 (via verbal communication) to be termed "all-kink catahexes". Hence, theorem 
B could be rephrased to say: A polymer is all-benzenoid iff it is an all-kink catahex. 
Indeed, El-Basil [26] has anticipated such a result, at least for catahex chains. 

5. Conclusions 

A beginning of a mathematically oriented exploration of the graph-theoretic 
characteristics of the chemically relevant polyhex systems has been made. Here, pms 
on these polyhexes have been considered in terms of novel, little previously studied, 
concepts: forcing and pro-vectors. Some interesting results have been obtained, and 
some further questions have been indicated. 
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Appendix A: Proof  of theorem A 

To begin the proof, note that if fl(G) = O, then no edge of the polyhex G would 
be forcing. If fl(G) = 1, then none of the bonds absent from the single pm would 
be forcing. 

Therefore, we are left with the case fl (G) _> 2 which the remainder of the proof 
concerns. Given two different pms, consider the spanning subgraph S of G with edge 
set the union of the two pms. Pauling [27], in 1933, called such an S a superposition 
diagram. As noted by Pauling, the components of S consist of one or more even 
cycles and possibly some isolated edges. If there are any isolated edges in S, then 
any one of them would not be forcing, since there are two possibilities for the 
assignment of pm edges around a cycle of S. Similarly, if there are two (or more) 
cycles in S, none of the edges in either cycle is forcing, since assignment of one 
would not force a choice in the other cycle. 

Thus, we consider the remaining circumstance that there is but a single cycle 
in C in S. Since S is spanning, all the vertices of G are in S. If all the edges of G 
are in C, then one has a single hexagon, for which all the edges are forcing. Otherwise, 
there is at least one edge not in C. Without loss of generality, the nodes of C may 
be numbered consecutively around C (as 1, 2 . . . . .  p) and an additional edge may be 
taken as {1, n} (for some n ~ {3, 4 . . . . .  p - 2 } ) .  Evidently, n must be even since 
the sequence 1, 2 . . . . .  n identifies a cycle of the bipartite graph G. Then, the edge 
{p, p -  1} is not forcing because it occurs both in the pm with edge set 
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{ { 2 i - 1 , 2 i } ;  i =  1 top /2}  

and in the pm with edge set 

{ { 2 i - 1 , 2 i - 2 } ;  i =  1 to n/2} u {{2j, 2 j -  1}; j =  n/2+ 1 t o p / 2 ) .  

Thus, the only polyhex for which all the edges are forcing is benzene, consisting of  
just one hexagon. 

Appendix B: Proof of theorem B 

To begin the proof, assume that graph 3.3 of fig. 1 is a subgraph of a polyhex 
G. Any pm of  G must contain exactly one of the three edges radiating from the 
central node of 3.3. Clearly, this node is in three hexagons although the associated 
pm edge is in only two, so that not all three rings can contribute to n 3 for any pm 
- that is, at least one ring must contribute to n 0, n 1 or n 2. Since the substructure of 
3.3 must occur in any pericondensed (i.e. non-catacondensed) polyhex (without "holes"), 
the extremum pm-vector with n o = n~ = n 2 = 0 is unrealizable for this case. 

Second, for the catacondensed case consider the possibility that the 3-acene 
graph 3.1 of  fig. 1 is a subgraph of G. For the central hexagon to contribute to n 3 
for a particular pm, the bonds therein must be disposed in one of the two ways 
indicated in fig. 7. However, then the adjacent hexagons marked by an asterisk 

Fig. 7. Constructions for the 3-acene graph, 
as used in the proof of theorem B. 

cannot contribute to n3, and must contribute to n 0, n 1 or n 2. Hence, these polyhexes 
too cannot have an extremum pm-vector with n o = n~ = n 2 = 0. 

Finally, consider the possibility of a catacondensed polyhex G with no subgraph 
of the 3-acene type. Begin the construction of a certain spanning subgraph M by choosing 
every edge shared between two rings to be included in the edge set of  M. If there 
is just one hexagon in G, then the extremum pm-vector is clearly achieved. Otherwise, 
consider a typical hexagon joined to (at least) one other, say on the left-hand side 
as in fig. 8, so that the boldface edge on the left is to be included in M. We also 
include the two other boldface edges, either (or both) possibly being shared with 
another hexagon. None of  the non-boldface edges can be shared with another hexagon, 
since this would then yield one of  the currently excluded subgraphs 3.1 or 3.3. 
Evidently, M is an extremum pm with no = nl = n2 = 0. 
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Fig. 8. The typical hexagon sharing of at least the 
leftmost edge with other rings of the polyhex. 

The uniqueness of M of the preceding paragraph is seen upon first noting that 
in order for matching M to be an "extremum", the shared edges would need to be 
included in order that both hexagons, sharing such an edge, contribute to n 3. These 
shared edges are then seen to force the remaining edges, so that M is unique. Hence, 
the proof of the theorem is completed. 
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